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Neutron diffraction measurements of CuCI with the zincblende structure were carried out at room 
temperature and the results examined on the basis of three possible structure models: (1) harmonic 
thermal vibration of atoms, (2) asymmetric anharmonic vibrations and (3) statistical disorder arrange- 
ment of the copper atom. It was found that the anharmonic model was the most plausible for the structure 
of CuC1. The final R value in the least-squares analysis was 0.037. The parameters in the effective one- 
atomic-potential fields for the zincblende structure 

Vj(r) = 1 2 2 . . .  Voj + :r~s(ul + uz + u~) + Psu~u2u3 + 
were obtained as ~cu=0.74+0.01, ~c,=1.35+0.02x 10-nerg /~-2, and flcu=l'15+0.66, flc~=0.0+ 
1.6 × 10-12erg A -3. It is also shown that the temperature dependence of the Bragg reflexion observed 
from room temperature to 523 °K can be explained very well with the use of the above parameters. 

1. Introduction 

It is well known that cuprous halides, CuC1, CuBr 
and CuI, undergo first-order phase transitions from 
the zincblende-type to the wurtzite-type structure. It 
is also known that these crystals show anomalously 
large ionic conductivities at high temperature. 

In connexion with the interesting ionic properties, 
the structural investigations of the phase transition in 
these crystals have been carried out using powder 
samples of CuI and CuBr (Miyake, Hoshino & Take- 
naka, 1952; Hoshino, 1952; Miyake & Hoshino, 1958). 
In these studies, an anomalous increase of a mean- 
square displacement (u 2) for copper atoms with in- 
creasing temperature was found from the analysis of 
measurements of the temperature dependence of X-ray 
Bragg intensities. The value of (U2) 1/2 for the copper 

* On leave from Department of Chemistry, Tokyo Kyoiku 
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Fig. 1. The schematic models for thermal vibrations of copper 
atoms  in cuprous halides, (a) harmonic thermal vibration, 
(b) asymmetric anharmonic vibration and (c) atoms located 
statistically at four displaced positions with moderate 
thermal vibration. 

atom in cuprous iodide, for example, was reported to 
be as large as 0.9 A at 415°C. Such anomalous thermal 
behaviour of these substances was discussed on the 
basis of the following three possible models; 

Harmonic model: Vigorous isotropic thermal vibra- 
tions of copper atoms. 

Anharmonic model: Asymmetric anharmonic ther- 
mal vibrations of copper atoms along the tetrahedral 
diagonals.t  

Disordered model: Statistical disorder of the copper 
atom with moderate thermal vibration among four 
metastable positions which are displaced from the nor- 
mal position along the tetrahedral diagonals.+ + 

The schematic illustration of these models is given 
in Fig. 1. 

It was pointed out that the above three models give 
almost the same intensity effect, because they are alike 
in assuming extended distributions of metal atoms 
around the normal positions. But it was suggested 
that the anharmonic model might be the most plausible 
one, although further studies using single-crystal spec- 
imens would be necessary to determine the structure. 

A similar intensity anomaly in the Bragg reflexions 
with temperature has been noticed by Willis (1963a, 
b) for the actinide oxides (UO2 and ThO2). These 
oxides were found to possess the fluorite structure, in 
which the positions of the oxygen atoms have the same 
tetrahedral surroundings as seen in the cuprous ha- 
lides having the zincblende structure. It was shown 
that if a temperature-dependent oxygen shift was in- 

t This model was originally proposed by Matsubara (1952) 
to explain specific heat data for e-CuI. 

:I: This is the model put forward first by Helmholz (1935). 
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troduced, the disordered arrangements of the oxygen 
atoms fitted the observed data very well for a wide 
temperature range from room temperature to 1100°C. 
The model based on the assumption of asymmetric 
anharmonic vibrations of the oxygen atoms was also 
suggested by Willis (1963b) as another possible inter- 
pretation of the data. 

Recently, Dawson, Hurley & Maslen (1967) have 
shown that these characteristic features in the diffrac- 
tion data for UOz and also for CaF2 could be inter- 
preted in terms of the generalized formulation of the 
structure factor (Dawson, 1967) in which the effect 
of the asymmetric anharmonic vibration on the tem- 
perature factor was included on the basis of the ef- 
fective one-atom-potential field approximation. This 
approach is extremely useful for estimating the an- 
harmonicity in the thermal vibration without the com- 
plexity of rigorous treatments such as those of Mara- 
dudin & Flinn (1963) and Kashiwase (1965). 

Further development of this treatment to the more 
general eases has been made by Willis (1969). With 
the general approach, the studies to investigate an- 
harmonicity in the thermal vibration have been carried 
out by neutron diffraction for the several compounds 
of the fluorite-type structure, such as BaF2 (Cooper, 
Rouse & Willis, 1968), SrF2 and CaF2 (Cooper & 
Rouse, 1971), and also for some with the diamond 
structure [Si and Ge by Keating, Nunes, Batterman & 
Hastings (1971), Niimura & Kimura (1972) and Tru- 
cano & Batterman (1972)] and zincblende type struc- 
ture [ZnS and ZnTe by Cooper, Rouse & Fuess (1973)]. 

As a problem relating to the asymmetric anharmo- 
nicity in the thermal vibration in crystals it is interest- 
ing to re-examine the dynamical behaviour of the cup- 
rous halides by neutron diffraction. Since a good large 
single crystal of CuC1 was available, we collected three- 
dimensional neutron diffraction data from CuCI at 
room temperature and also investigated the variations 
of several Bragg intensities with the increase in temper- 
ature. The three models proposed previously were 
then examined in the light of the present data. 

The purpose of this paper is to show that the an- 
harmonic model obtained by least-squares analysis of 
the data at room temperature can explain the data 
for temperature dependence very well. By this analysis 
a fairly large component of asymmetric anharmonicity 
in the thermal vibration was found to exist for the 
Cu atom but not for the C1 atom. 

2. Representations of the three models 

In the kinematical approximation in diffraction theory, 
integrated Bragg intensity is proportional to the square 
of the structure factor F(Q) which is represented as 

F(Q)= ~ bjTj(Q) exp (iQr:), (1) 
J 

where bj is the scattering length, T:(Q) the temperature 
factor depending on the scattering vector Q ([Q[= 

4re sin 0/2) and r: the position vector from the origin 
of the unit cell to the equilibrium position of the j th 
atom. In general T:(Q) is given by ensemble average 

Tj(Q) = (exp {i(Qu:))), (2) 

where uj is the displacement of the j th atom from its 
equilibrium position due to the lattice vibration. If the 
approximation of an effective one-particle potential is 
applied, the average of equation (2) can be replaced by 

(exp {i(Quj)})= f l I exp{i(Quj)}exp{-V:/kBT}duj 

~ I I i exp {-- VJkBT}du~ , (3) 

where Vj is the effective one-particle-potential field 
seen by atom j and has a different form depending 
on the site symmetry of the position in the crystal, 
kB is Boltzman's constant and T the temperature. 

The atoms in the unit cell of CuCl (zincblende struc- 
ture of space group F43m) have coordinates 

Cu; 0,0,0; f.c. 

C1; ¼,¼,¼; f.c. (4) 

Both the atoms are situated at positions with the non- 
centrosymmetric site symmetry 43m so that the effec- 
tive potential fields for these atoms can be expressed 
a s  

Vj  Voj 1 2 2 = "~- 2~j( / . /1  "Jr" 122 "t- U~) "]-t~jUlU2123 

+ (higher-order terms), (5) 

where ul, u2, u3 are the components of uj. For this type 
of crystals, the Bragg reflexions which follow the ex- 
tinction rule for the face-centred lattice are classified 
into three types; 

(i) h+k+l---4n 
F(Q)F*(Q) = [bc, Tcu(Q) + bo Tc,(Q)] z (6) 

(ii) h+k+l=4n+2 
F(Q)F*(Q) = [bc, Tc, (Q)-  bc, Tc,(Q)] z 

(iii) h + k + l = 4 n  +_ 1 

F(Q)F*(Q)= [bc, Tc,(Q)] 2 + [bcl To(Q)] 2. 

(7) 

(8) 

2.1. Harmonic model 
In this model, we assume that the potential is quadrat- 

ic and isotropic with respect to uj. Thus, the integral 
(3) can be easily carried out and Tj(Q) in equations 
(6), (7) and (8) is given by 

T:(Q) =exp {-Bj(sin 0/2)2}, (9) 

where Bj are the so-called temperature parameters and 
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related to the mean-square displacement (u~) by 

~s=8~(.~)  (lO) 

or to the parameter es in equation (5) by 

B s = 8rcZkBT/o~s. (11) 

If equation (9) is substituted into "equations (6), 
(7) and (8) and the Bj left as unknown parameters, 
the number of parameters to be determined in this 
model is two apart from a scale factor, i.e. the two 
temperature parameters for the Cu and C1 atoms. 

2"2. Anharmonie model 
In this model, the third-order term fl;u~u2u3 is taken 

into account in addition to the harmonic quadratic 
term. The integration of equation (3) was given by 
Willis (1969) in the case of cubic symmetry and the 
temperature factor Tj(Q) was shown to become com- 
plex in the form 

Tj(Q) = T~j(Q) + iT, s(Q). (12) 

T~j(Q) and T,j(Q) represent centrosymmetric and anti- 
symmetric components with respect to Q and they are 
due to the centrosymmetric and antisymmetric terms 
of the potential fields in equation (5) respectively, 

T~j(Q) =exp {-(kBT/2~zs)Q 2} (13) 

Tas(Q) = T,j(Q) (ksT)2(27r/ao)a(fls/cz~)hkl. (14) 

By comparing equation (9) with equation (13), one 
can find that the centrosymmetric component Tcs(Q) 
is identical to the harmonic temperature factor. Sub- 
stitution of equation (12) into equations (6), (7) and 
(8) leads to additional contributions from T, fiQ) which 
represents the antisymmetric phenomena in diffraction 
data (Dawson, Hurley & Maslen, 1967). Thus, we 
have: 

(i) h + k + l = 4 n  
F(Q)F*(Q) = [bc, T~cu(Q) + bcx T~c~(Q)] 2 

+ [bc. T.~R(Q) + b~, T.c,(Q)Y (15) 

(ii) h + k + l = 4 n + 2  
F(Q)F*(Q) = [bcuT~cu(Q) - bc, T¢c~(Q)] 2 

+ [bc. T~cu(Q) - bcl T~c,(Q)] 2 (16) 

(iii) h + k + l = 4 n + _  1 
F(Q)F*(Q) = [bcu T~cu(Q)] 2 + [bc, Tcc,(Q)] 2 

+ 2bc~bc,[Tacu(Q) Tcc,(Q) 
- T~cutQ) T.cl(Q)] 
+ [bcu T.cu(Q)] 2 +[bclT~c,(Q)] z. (17) 

In view of the fact that T,s,~ T~ s, the effect of the 
anharmonicity on the Bragg intensity is particularly 

enhanced for the reflexions of type (iii) to the first 
approximation, in which T]j terms are neglected. Mi- 
yake & Hoshino (1958) have suggested from their X-ray 
studies that the anisotropic anharmonic thermal vibra- 
tion would be considerable only for the metal atoms. 
In the present anharmonic model, however, the an- 
harmonicity in the C1 atom was also taken into account. 
Thus, the parameters to be determined in the analysis 
are two harmonic parameters ecu, C~c, and two anhar- 
monic ones flcu,flc,- 

2"3. Disordered model 
In this model, each copper atom is assumed to be 

statistically located with the same probability at four 
equivalent positions which are displaced in the tetra- 
hedral directions from the normal position in the 
zincblende-type structure. That is, the coordinates of 
these four equivalent positions for the Cu atom, which 
is located at 0,0,0 in the normal zincblende structure, 
are as follows, 

Cu; ~, ~, ~; J,O,O; ~ , ~ ;  ~,~,~- 

where ~ is the coordinate representing the positions. 
Atomic coordinates of C1 atoms, however, are the same 
as those in (4). As for Tj(Q), the isotropic harmonic 
temperature factors are assumed. The squares of struc- 
ture factors are also classified into three types in this 
model: 

(i) h + k + l = 4 n  
F(Q)F*(Q) = [bcuTccu(Q)ChCkCt + be, Tcc,(Q)] z 

+[bcuTccu(Q)ShSkS,] z (18) 

(ii) h + k + l = 4 n + 2  
F(Q)F*(Q) --[bcuTccu(Q)CnCkC,- bc~ Tcc,(Q)] z 

+[bc.T,  cu(Q)ShSkSt] 2 (19) 

(iii) h + k + l = 4 n +  1 
F(Q)F*(Q) = [bc.T¢cu(Q)ChCkC,] 2 + [bc~ T¢c,(Q)] 2 

+ 2bcubc~Tccu(Q) Tcc,(Q)ShSRSz 
+ [bcu Tccu( Q)ShSkS,] 2. (20) 

In these equations 

Sh=sin (2nha) and C~=cos (2nha). (21) 

If an approximation, 

cos (2nha)= 1 and sin (2rcha)= 2nha,  (22) 

is justified by regarding ~ as small quantity and c~ 3 
is replaced by (k~T)zfl/(aooci) a in equation (14), the 
structure factor of this model becomes the same as 
that described for the anharmonic model except for 
the anharmonicity for C1 atom. Therefore, it should be 
noticed that the anharmonic model and the disordered 
model are not distinguishable if c~ is small. The par- 
ameters involved in this model are Bcu, Bc, and & 

A C 3 0 A  - 4* 
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3. Experimental 

3.1. Measurement of  the Bragg intensities 
The single-crystal specimen of CuCI used in this 

study has a spherical shape with diameter of 7 mm. 
In the high-temperature measurement, the crystal was 
sealed into a fused quartz capsule to avoid oxidation. 
Integrated intensities of 46 independent Bragg re- 
fexions at room temperature (25°C) were measured 
on the four-circle single-crystal neutron diffractometer 
of the Institute for Solid State Physics, the University 
of Tokyo, installed at JRR-3 reactor of Japan Atomic 
Energy Research Institute, using Cu(422) as the mono- 
chromator. The wavelength of the incident neutrons was 
1.04 A. The maximum available scattering angle of 
this diffractometer is 150 °. In the measurements a step- 
by-step e~-scanning method was employed. 

At least two equivalent reflexions (hkl and h/~l) were 
measured in order to estimate the accuracy of the 
present measurement. The errors among the equivalent 
reflexions were less than those due to counting statistics, 
which were less than about 5 %, except for three very 
weak reflexions 842, 680 and 10,0,0. No anomalies 
were observed in the background scattering and back- 
ground measurements were, therefore, made on both 
sides of the Bragg peaks. 

3.2. Corrections 
Absorption corrections for the observed intensities 

were made utilizing the analytical expression for the 
transmission factor for a spherical crystal given by 
Rouse & Cooper (1970). 

The extinction effect was not particularly evident 
in the present crystal; this was deduced by comparing 
the observed intensities with those obtained from 
powder diffraction measurement. 

Recently it has been emphasized that the observed 
data should be corrected for the contribution of ther- 
mal diffuse scattering (TDS) when the accurate determi- 
nation of the temperature factor is the purpose of the 
study. TDS is known to produce sharp maxima under 
the Bragg reflexions and to contribute to the observed 
integrated intensities if the background is subtracted 
in the normal way. In the present study, TDS correc- 
tion was made using a newly developed method by 
Harada & Sakata (1974) and Sakata & Harada (1974). 

4. Experimental results 

Fig. 2 (a), (b) and (c) shows plots of the observed 
structure factor, IF(obs)l, against sin 0/;I. for the three 
types of reflexion. The structure factors for h + k  + l=  
4n and 4n + 1 decrease monotonically with an increase 
of sin 0/),, whereas for h + k + l=  4n + 2 they do not 
show such a monotonic decrease. With reference to 
equation (7) this anomalous behavior can be under- 
stood as a result of the very rapid decrease ofbcu TcJQ) in 
comparison with boTch(Q). Since bcl is larger than bcu, 
the temperature parameter Bc~ should be larger than Bcl. 

Another point to be noticed in Fig. 2(e) is a differ- 
ence of structure factors between the pairs of Bragg 
reflexions such as 333 and 511, 711 and 155 and so on, 
while this kind of difference is not evident in Fig. 2(a) 
and (b). They are depicted by arrows in the figure. 
This is what was expected from the intensity formula 
for the anharmonic model as well as for the disordered 
model described in §§2.2 and 2.3. It is clear that such 
a phenomenon cannot be explained by the harmonic 
model. 

5. Least-squares refinement 

The least-squares analysis of these three models was 
carried out on the FACOM 230-60 computer of Nagoya 
University Computation Centre using the non-linear 
least-squares PO WLS program (Hamilton, 1964) which 
was modified so as to be available for the present 
single-crystal analysis. Using this program, parameters 
in the models were refined by minimizing a quantity 

w,[F2(obs)- F](calc)], (23) 
i 

where F 2 (obs) is the square of the observed structure 
factor, F 2 (calc) the corresponding computed value 
and wi the weight given to the observation. Estimation 
of wi was made on the basis of the statistical errors 
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Fig. 2. Observed structure factors for the three types of reflex- 
ions as a function of sin 0/2. 121, A, © represent two reflexions 
with different indices. 
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in the measurements of integrated intensities, since 
they were larger than the discrepancies between two 
equivalent reflexions. The neutron scattering lengths 
used in the analysis are as follows (The Neutron Dif- 
fraction Commission, 1969): 

and 
bcu=0.76 x 10 -12 cm 

bo=0"96  × 10 -12 cm.  (24) 

The results obtained from the analysis are listed in 
Table 1 for the three models. In the refinement of the 
anharmonic model, the anharmonic parameter tic, was 
found to have little effect on the R value, giving a very 
large standard deviation, while flcu was determined 
with the reasonable accuracy as listed in the Table. 
In order to clarify this situation a contour map giving 
equal R values was constructed in a space of the two 
parameters flcu and tic,, fixing other parameters at the 
values obtained from the least-squares analysis. The 
result is shown in Fig. 3. As seen in the Figure there 
is a deep minimum on the flcu axis, extending along the 
flc~ axis, and a valley is formed in the map. The mini- 
mum position of the R value, however, is seen at 

-0.7~ ' t , i , 

-0.6 

% -o.s 

~ -0.4 

I -0.3 

-O'i[ - 0 . 1  

0'.9 1.0 1.1 i'.2 1.3 

~Cu ( x 1(fl2erg K3 ) 

Fig. 3. Equi-contour map of R values in a space of the two 
parameters flcu and .8o. Numbers on the map represent R 
values as a percentage. 

f l o = 0 ,  f lc ,= 1"14× 10 -12  erg A -a which are in agree- 
ment with the least-squares results. 

It is seen from Table 1 that the harmonic model is 
not fully successful in explaining the present neutron 
data at room temperature, as was predicted in the pre- 
liminary analysis described in §4. When the comparison 
is made between the other two models, however, it is 
difficult to conclude from the least-squares results 
alone which model, the anharmonic model or the dis- 
ordered model, is suitable, although the R value for 
the anharmonic model is slightly lower than that for 
the disordered model. 

For  the anharmonic model, the temperature par- 
ameter for the Cu atom is about twice as large as that 
for the C1 atom in spite of the fact that the Cu atom 
is much heavier than the C1 atom. Such a big difference 
between the temperature parameters for the two kinds 
of atom does not exist for the disordered model. This 
indicates that [the disordered model obtained is not 
such that the approximation given in §2.3 can be ap- 
plied. In fact, the value of 0.024 obtained for 6 cannot 
be regarded as a small quantity. Hence, the disordered 
model is essentially different from the anharmonic one. 

For  the further study of the thermal vibration of 
atoms, it is worth while investigating the temperature 
dependence of the intensities of Bragg reflexion. 

6. Temperature dependence 

The temperature dependence of the integrated intensi- 
ties for ! 3 Bragg reflexions was measured from room 
temperature to 523 °K. Some of the results are shown 
in Fig. 4. The calculated values for the anharmonic 
model are shown by the solid curves in the figure. 
The calculations for the disordered model were car- 
ried out by assuming that c~ is temperature indepen- 
dent (dashed curves in Fig. 4). For  the normalization 
between the calculation and the observation, the scale 
factor obtained in the least-squares analysis at room 
temperature was used. As seen from the figure, the 
anharmonic model gives a very good fit to the obser- 
vations, but the disordered model with fixed 6 does 
not. It is found, however, that if we introduce a temper- 
ature-dependent 6 shift (6 is assumed to be propor- 
tional to T"  and m is chosen as ~0.8) the disordered 
model also gives a good agreement with observations 
(dotted curves in Fig. 4). 

Table 1. The final values of parameters and R values obtained from the least-squares refinements for the three 
models 

Harmonic model Anharmonic model Disordered model 
Parameters (R = 5.2 %) (R = 3.7 %) (R =4.0 %) 

Bcu(A 2) 4.4 + 0.08 4.4 + 0.08 2-9 + 0.15 
Bcl 2.4 + 0.04 2.4 + 0.04 2.3 + 0.04 
~c.,(l 0- *2erg A-2) 0.74 + 0.01 0.74 + 0.01 1.12 + 0.06 
~c, 1-35 + 0.02 1.35 + 0.02 1.41 + 0.02 
flc.(lO- 12erg/~-a) __ 1-15 _+ 0-66 - -  
tic, - -  0"0 + 1"60 - -  
6 - -  - -  0"024 + 0"0006 
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7. Discussion 

It was shown from the present analysis of the inte- 
grated Bragg intensities of CuC1 that the anharmonic 
model and the disordered model with the temperature- 
dependent 6 shift gave almost the same results in ex- 
plaining the observed neutron diffraction data. This 
means that the potentials around the Cu site based 
on these two structure models are very alike, as seen 
from Fig. 1. In other words, it can be said that there 
is no essential difference between these two atomic 
potentials. In explaining the temperature dependence 
of the diffraction data, however, the disordered model 
requires a further parameter, i .e. the temperature de- 
pendence of the fi shift, while it is possible for the an- 
harmonic model to anticipate the situation at the 
elevated temperature from the parameters obtained 
at room temperature. This is exactly the same situation 
as that for UOz and CaF2 discussed by Dawson, Hurley 
& Maslen (1967). Thus, it should be understood that 
the potential of the Cu atom given by the disordered 
model is rather one approximation in describing the 
antisymmetric anharmonic potential of the Cu atom 
in CuC1. The large ionic conductivity of this crystal at 
high temperature can thus be understood in terms of 
the shallow anisotropic potential field for metal atoms 
which is characteristic of the zincblende-type cuprous 
halides. 

Previously, it has been shown by Miyake & Hoshino 
(1958) from their X-ray studies that the temperature 
dependence of the intensities of Bragg reflexions showed 
curious behaviour for CuBr and CuI, which su~gests 
an unrealistically large thermal vibration of the Cu 
atom at high temperature (for example, Bcu for CuI 
is as large as 20 at 415°C). They interpreted this as 
the result of the asymmetric anharmonic thermal vibra- 
tion of the Cu atoms. In the present analysis for CuC1 
at room temperature, it was shown that the asymmetric 
anharmonicity must be taken into account in order 
to explain the data well in spite of the smaller B value 
of the Cu atom in comparison with that of CuI at high 
temperature. Therefore, there is no doubt that the 
asymmetric anharmonic thermal vibrations exist for 
CuI and CuBr at high temperature. 

As seen in Table 1, the present analysis at room 
temperature shows that the B values in the anharmonic 
model are the same as those in the harmonic model. 
Therefore, the B values are not affected even if the 
additional anharmonic temperature parameters, fl~, are 
introduced in the least-squares refinement. This seems 
to suggest that the large B value of the Cu atom is not 
due to the neglect of cubic anharmonicity, but to the 
harmonicity itself. It could be concluded in general that 
the large B value indicates the necessity of the intro- 
duction of anharmonic terms in accurate structure anal- 
ysis. 

It is conceivable that the isotropic quartic anharmon- 
icity of the Cu atoms may contribute to the large B 
value. However, because the temperature dependence 

of the Bragg intensities can be well explained by in- 
troducing only third-order anharmonic terms in the 
potential field, we see that such a quartic anharmon- 
icity of the Cu atom is not important as far as the 
present case of CuC1 is concerned. 

Very recently, the anharmonicity for the atomic 
potentials in the zincblende structure (ZnS and ZnTe) 
was studied by Cooper, Rouse & Fuess (1973). They 
pointed out that in this type of structure it was possible 
to determine only one effective anharmonic parameter 
defined by fl' =fls-(0~S/0~Zn)3/~Zn, and that the anharmonic 
temperature parameters flz. and fls could not be deter- 
mined separately. In the present study of CuCI, how- 
ever, flc~ and flc~ were determined independently. This 
is because in the analysis of ZnS and ZnTe the square 
terms of the antisymmetric temperature factor [To~(Q)] 
were neglected, while in the present study of CuC1 
these terms were not neglected since the temperature 
parameters for CuC1 were much larger than those for 
ZnS and ZnTe. 

The present results suggest that a lattice-dynamical 
treatment of this type of crystal will be affected by 
the considerable contribution of cubic anharmonicity 
to the atomic potential. It seems interesting, therefore, 
to perform a lattice-dynamical study by paying partic- 
ular attention to the line broadening and the peak 
shift in the phonon scattering cross section of the 
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Fig. 4. Temperature dependence of integrated intensities for 
some Bragg reflexions. The solid curves represent the calcu- 
lation for the anharmonic model, the dashed curves that 
for the disordered model with temperature-independent 
shift and the dotted curves that for the disordered model 
with temperature-dependent 6 shift. 
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neutron inelastic scattering,* although no anomalies 
have been reported in the recent studies of the phonon 
dispersion relations for CuC1 (Carabatos, Hennion, 
Kunc, Moussa & Schwab, 1971), CuBr (Prevot, Cara- 
batos, Schwab, Hennion & Moussa, 1973) and CuI 
(Hennion, Moussa, Prevot, Carabatos & Schwab, 
1972). 

The authors wish to thank Dr C. Schwab of the 
Universit6 Louis Pasteur, Strasbourg and also Dr 
T. Inokuchi of the Sharp Central Laboratory, Nara 
for supplying us with large single crystals of CuC1. 
Thanks are also due to Dr Y. Fujii of the Institute for 
Solid State Physics, the University of Tokyo for hel- 
ping with the experiment in the preliminary stage and 
for valuable discussions. 

* Very recently, the temperature dependence of the disper- 
sion relation for CuBr was investigated and a distinct an- 
harmonic effect even at room temperature was found (Hoshino, 
Fujii, Axe, Shirane & Harada, 1974). 
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